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We have used kinetic Monte Carlo simulations to study the kinetics of unfolding of cross-linked polymer
chains under mechanical loading. As the ends of a chain are pulled apart, the force transmitted by each
cross-link increases until it ruptures. The stochastic cross-link rupture process is assumed to be governed by
first order kinetics with a rate that depends exponentially on the transmitted force. We have performed random
searches to identify optimal cross-link configurations whose unfolding requires a large appliethfeaseire
of strength and/or large dissipated energyeasure of toughnesdVe found that such optimal chains always
involve cross-links arranged to form parallel strands. The location of those optimal strands generally depends
on the loading rate. Optimal chains with a small number of cross-links were found to be almost as strong and
tough as optimal chains with a large number of cross-links. Furthermore, optimality of chains with a small
number of cross-links can be easily destroyed by adding cross-links at random. The present findings are
relevant for the interpretation of single molecule force probe spectroscopy studies of the mechanical unfolding
of “load-bearing” proteins, whose native topology often involves parallel strand arrangements similar to the
optimal configurations identified in the study.
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I. INTRODUCTION molecule’s conformational changes. This equilibrium regime
is rarely achieved in AFM pulling studies. It further appears

e -_that many proteins that perform “load-bearing” functions in
and toughness that cannot be matched by artificial material ﬁ/ing org);r?isms operatg far away from eql?ilibrium' as a

[1-4]. Recent single molecule force probe Spectroscopy eXgegit their mechanical stability is often uncorrelated with
periments suggest that these remarkable properties are ahﬁ
a

eir th ic stabilit}j7,9-12.
complished through the mechanical response of individu eir thermodynamic stability7,9-12

in d . hich ble of dissinating | For example, the work required to unfold the molecule of
protein domains, which are capable of dissipating large eng,o y;scle protein titin in a typical AFM pulling experiment
ergy upon their mechanical unfoldifg,4,5.

: ) : . is about 2 orders of magnitude higher than its free energy of
In single molecule pulling experiments employing the

ic f . d of th =~ =folding, indicating that this is a highly nonequilibrium pro-
atomic force microsCopeAFM), one end o t.e protein is cess[5]. This property accounts for the high toughness of
attached to a substrate and the other end is attached to

; . . tiftn arguably required for its biological function in the
cantilever(see, e.g., Ref$6-8] for a review; the cantilever .\ .sojo5  Similarly, the difference between the force-vs-
then can be displaced at a constant rate. During such

&\tension curves measured in the course of stretching and

experiment, one measures the pulling force, and then preghqeqient relaxation of spider capture silk protéiisre-

sents the data in the form.of the force-_d|splacemenF CUV&eals that stretching is a nonequilibrium process, in which
The forces generated by different proteins under typical EXextra energy is dissipated. In contrast, the work required to
perimental conditions range from a few piconewtons to sev- nfold of the myosin coiled-coil via pu'IIing on it at similar
eral hundred piconewtons and generally depend on the pu'EuIIing rates is comparable to the free energy of folding
ing rate. If one were to perform an equilibrium, reverSibleindicating that this is a nearly equilibrium process. '
stretching experiment by pulling on the molecule at a suffi- o yachanical resistance of a protein is thus determined
ciently slow rate then thg measured force-vs-displacemerg by its structure and by the loading rate. Recently, we
curve would become rate independent and the work done by, e stydied a toy model of a cross-linked polymer chain,
the pulling force would be equal to the free energy differenc

Svhich we used to identify the chain configurations that lead
between the folded and the stretched states of the moleculfa0 its high mechanical resistan¢&3]. In that model, we

In practice, stretching of a molecule is nearly an equilibriume,qjgered a Gaussian chain with rigid cross-links. Unfold-

process if the timescale of pulling is longer than that of thej, g of the chain under mechanical loading occurs as a result

of rupture of the cross-links. Each cross-link ruptures once

its internal force reaches a critical value. Thus, as the chain

*Corresponding  author.  Email  address:  makarov@ends are being pulled apart at a constant rate, the force in
mail.cm.utexas.edu each link increases until it ruptures. As the loading proceeds,

A number of proteins exhibit a combination of strength
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all the cross-links become ruptured and the chain unfoldsSec. V, we discuss implications of our results for pulling
The excess work done on the cross-linked chain, as conmexperiments on single molecules.

pared to the work done stretching the unconstrained chain, is
a measure of the chain toughness. Given the total number of
cross-links, one may seek the optimal cross-link configura-
tions that maximize either the excess work or the maximum Consider a polymer chain consisting bf 1 beads con-
force during the unfolding process. Our rationale for study-nected byL links. The chain is assumed to obey Gaussian

ing such a simple model was the previous findingstatistics so that the probability distribution for the distance
[7,10-12,14 that the unfolding mechanism is largely deter- hetween beadsandj is given by

mined by the native topology of the protein. This view is

further supported by the success of simplified, Go-like mod- 3 812 3lr; - rJ-|2

els in predicting the mechanisms of mechanical unfolding P(ri=rj)= 2702 - || exp ~ 2li—jb? |’ 1)
[15-18. Although Gaussian cross-linked chains are merely

caricatures of real biopolymers, they may adequately captur@hereb is the rms length of a single link. One way to con-
the effects of topology on the unfolding mechanism. Indeedstruct such a Gaussian chain is to connect neighboring beads
there are good reasons to believe they do. Specifically, thiy harmonic springs such that its potential energy is given by
key finding of our previous study is that the optimal configu- L

rations that maximize the peak force and the dissipated en- 1 5 _ 3kgT

ergy must involve parallel strands. This finding is consistent U= 57’02 riea=ril* with 9= b2 ()

with experimental studieg7,9,10,19-24#4and molecular dy- =t

namics simulation$25—-29 of the protein domains exhibit- wherekg is Boltzmann's constant aril is the temperature.
ing high unfolding forces, such as the 127 domain in titin.  The motion of the chain is constrained blcross-links.
Further, this finding has led to the prediction that proteinEach link is designated by the indices of its end points, so
domains with the ubiquitin fold, which features terminal par-that the entire set of cross-links is denoted I

allel strands similar to those in 127, exhibit superior me-={{i;,j.},....{in.in}}. Each cross-link is regarded as rigid;
chanical properties, despite the fact that they have no appaaiternatively, one can model a cross-link as a spring with a
ent mechanical functions in living organism80]. This  spring constanty,> y,. We assume that no bead can be at-
prediction is supported by both experimefi®] and mo- tached to more than one cross-link, so that the maximum
lecular dynamics simulation$0,31]. number of cross-links isN=(L+1)/2.

While providing results that are qualitatively consistent The chain endémonomers number 1 arid+ 1) are pulled
with atomistic scale studies, our modég] entirely ignored  apart at a constant speedo that the distance between them
stochastic and rate-dependent aspects of unfolding. This is &jtows linearly as a function of time
unrealistic assumption in many cases because, in general,
rupture of a chemical bond is a chemical reaction, i.e., a [rL—rol =e=ut. 3

stochastic process whose rate is affected by the transmittqgh, suppose that loading is slow compared to a typical time-
force [32]. Further, as we mentioned earlier, load-bearings;a|e of thermal Brownian motion of the chain. In this case,
proteins exhibit high toughness and strength precisely beje 35sume that the value of the pulling foFeé) recorded at
cause they are loaded at high rates so that unfolding is gny instantt is the forceaveragedover the thermal motion.
nonequilibrium irreversible process accompanied by IargeAt the same time, the timescale of cross-link rupture may be

energy dissipation. ) )
Models of force-induced rupture of chemical bonds arecomparable with that of loading and so the rupture of a

. . . X cross-link may result in a measurable changé&(t).
well known in the contexts of protein unfolding and ligand y g€

o We consider two rupture models for the cross-links. In the
unbinding[19,20,32-3%and fracturg36]. In those models, .. first model, which we refer to asodel | a cross-link rup-

rupture of a bond is described by. first-order kinetics and ItStures deterministically once its internal force reaches a criti-
rate depends on the force transmitted by the bond. The mai L valuef,. This model has been studied previouglg] but

purpose of thi_s paper is to adapt our model of_cross-l_inke e include it here for comparisons. In the second model, to
Gaussian chains to study how the optimal chain conflgura\—Nhich we refer asnodel ||, rupture of a cross-link is a sto-

?ons tdhat mgxmltzr:e tlhe ;xcesst wc_)rrk t?pd/ ordthe mﬁx'munl:hastic process described by first-order kinetics. Specifically,
orce depend on the loading rate. 10 this end, We NaVe agy, -, jitional probability that the cross-link that is intact at

Slrj(;nfdkit:atti rup\):,LthLe offeracrj dcros%hnnkt |srd§sgir||ibed :é/ f'rs’rt_fimet ruptures in the time interval fromhto t+At depends
orae €etics a force-dependent probabl ty a pe only on the instantaneous value of the internal fditg and
formed kinetic Monte Carlo studies of the chain unfoldlng.iS given by[32]

The main finding of this study is that the parallel-strand ar-

Il. THE MODEL

rangements remain optimal even when the stochastic nature f(t)
of bond breaking is taken into account; While always featur- K[f(t)JAt = ko ex T |AL (4)
ing such parallel strands, the found optimal configurations ¢
generally depend on the loading rate. wherekg is the rupture rate constant at zero force &nis a

The rest of this paper is organized as follows. In Sec. Il reference force. Equatio¥) is a commonly used model,
we describe the model. In Sec. IIl, we outline the simulationwhich assumes that the free energy barrier to rupture de-
methods. In Sec. IV, we present our simulation results. Ircreases linearly with the forde[20,32). Although this equa-
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tion is not necessarily quantitatiy81,37), it is sufficient for

qualitative predictions, as it properly identifies the rapid in- 144 F,

crease ok[f(t)] once the internal force exceetls @~ 17T
Because the rate of E¢4) is not zero at zero force, then,

strictly speaking, any cross-link configuration in model Il is

unstable and the chain will unfold irreversibly on a time- -0

scale of orde|1<5l even if no force is applied. This is not T

realistic since the folded state of a protein at zero force is _ 084

expected to be thermodynamically more stable than its uny

folded state. It is necessary to allow for the recombination of ~ 0-6

cross-links in order to restore the detailed balance in the

system[35,38,39. At zero force, the rate of recombination 0.4 4

for a cross-link would be higher thdg thereby rendering it 1 7/

thermodynamically stable. Here, we assume that the k@"he 0.2

is much longer than the timescale of loading. Under this -

assumption recombination of cross-links during unfolding is 0.0 —_— .

unlikely because forces in each cross-link will quickly reach 0.0 02 04 06 0.8 1.0

values large enough to destabilize each bond thermodynam el /f

cally such that the ruptured bond state has lower free energy

than that with the bond intact; in other words, once the bond FIG. 1. Unfolding of a cross-linked chaifa) The configuration

is broken it will be unlikely to reform unless the loading of a L=50 chain with the cross-links {{7,19,{15,4%,

force is removed. For these reasons we did not include cross$16,42,{21,33,{40,48}. (b) The force-vs-extension curve of this

link recombination in our model; It would therefore not be chain in the case of the deterministic unfolding scenémiodel ).

applicable to very slow, nearly equilibrium pulling experi- Each maximum corresponds to the rupture of one or more cross-

ments. In this respect, the physical regime explored by thdinks. The mechanical resistance of the_ chain is characterized by

present work is quite different from the reversible stretchingWo Parameters: The excess warkV required to extend the cross-

conditions assumed in the theoretical studies of RNA an nked chain relative to that for the “denatured” cha&agual to the

DNA mechanical denaturatidd0—44 and in the theories of Shaded argaand the maximum forcé,

the reversible stretching of proteinlike heteropolymers

[45-47. Note, however, that nonequilibrium effects have AW over sufficiently large number of realizations of the sto-

been considered in Ref46]. chastic unfolding process; we denote those quantities by
When the ends of a Gaussian chain are pulled apart, itd-m and(AW), respectively.

response follows Hooke’s lay8,49, which also holds in The adopted model will be used in the following settings.

the presence of cross-link§0]. However, the spring con-  Characterization problemGivenL, Cy, yq, Ko, f¢, and

stant of the entire chain changes upon cross-link rupturez determine(F,,) and(AW).
Under constant velocity loading conditions, the force- « Optimization problem Given L, N, v, ko, fe, and v
displacement curv&=F(e) is a piece-wise linear function determine the configurati¢s) Cy that maximizés) (F,, and
with jumps and different slopetee Fig. 1 Once all the (AW).
cross-links are ruptured, the slope is reduced to the effective
spring constant of the unconstrained chdips y,/L. . METHODS

The mechanical response of a cross-linked chain is repre-
sented by two quantitieef. Fig. 1): (i) the maximum force

F., and (i) “toughness,” i.e., the excess work done upon Between two rupture events, the cross-linked chain re-
unfolding: sponds as a collection of Hookean sprif§6]. The springs

are identified as follows.
(1) Arrange the Rl beads belonging to the cross-links in

A. Elasticity analysis

u
szf F(e)de- }Fouz (5)  the ascending order:
2 L
° 1sip<ip< - i1 <ipnsL.
whereu is the distance between the 1st and thelst beads ~ (2) Identify each chain segment between two consecutive
at the end of the pulling experiment, once all the cross-linkgnembers of this set as a spring.
have been ruptured. (3) Assign to each spring the spring constagptn, where

For model |, rupture is a deterministic process, so Ehat N is the number of the chain links in the segment.
and AW are unique for a given saty. Further, the force- Once the springs and their spring constants have been iden-
displacement curve and its paramet&s and AW can be tified, the entire assembly can be analyzed using the finite-
determined upon solving a set bflinear problems that re- €lement method50]. The results can be expressed as
flect the sequence of the rupture events. In contrast, in model _

. ; . . F(t) =T(t)vt (6)

I, rupture is a stochastic process. Accordingly, for a given
setCy, it is necessary to determine the average§gfand and

021904-3



EOM, MAKAROV, AND RODIN

fi®) = a(OF (D), )

wherel'(1) is the instantaneous overall spring constant of the
cross-linked chainf,(t) is the internal force in th&th cross-
link, and (t)’s are dimensionless coefficients. The proce-

dure for finding these coefficients is detailed in RO

Note thatl'(t) and «,(t) depend on the current configuration
of the cross-links and remain constant between rupture
events; in general, they are piecewise constant functlons

time.

B. Kinetic Monte Carlo method

To simulate the stochastic unfolding process we use th
kinetic Monte Carlo method35,51-53. Suppose that at
time ty, there aren cross-links. Let us evaluate the probabil-
ity that the first rupture among those cross-links occurs at

later time, in the time interval betweenand t+At. This

probability is equal to the probabilit§(t,t;) that no cross-

link has ruptured in the time interval betwegrandt, times

the sum of the probabilities for each of the cross-link to

rupture in the time interval betwedrandt+At:

D(t)At=S(t,ty) > K[ f(t)]AL. (8)
m=1

Also, in the time interval betweenhandt+At the survival
probability is reduced byb(t)At, so that
- d(H)At= St + At,ty) — S(t,to) = (dFdt)At.

This leads to the differential equation f6ft,ty):

dSt,to)/dt =~ S(t, to) > K[ fr(t)]. 9)
m=1
Using Egs. (4), (6), and (7) we have Kf,(t)]

=ky exfan(to)['(tp)vt/f.]; substituting this into Eq(9) and
integrating we obtain

Sit,t) = exp{— ko> <

: f [eX% am(to)F(to)vt)
me1 am(to) I (to)v fe

- ex% am(to)r(to)vto)} }
fe

am(to)r(to)vt]
f. '

(10
and

D(t) = koSlt, 1) X ex (12)
m=1

The standard methd®5,51-53 for generating the timée
on a computer is to solve the equation

St,to) = El (12)

where ¢ is a uniformly distributed random variable in the
interval [0,1]. We use modified Newton’s method to solve
this equation numerically. Once the tinhés generated, we
need to determine which of threcross-links ruptures. This is
done by computing the weighted probability of rupture for

each of the cross-links:

PHYSICAL REVIEW E 71, 021904(2005

exF{ it }
2 ,{ﬁ}

Next, we divide the intervdl0,1] into n subintervals whose
ngths arew,, Finally, we generate\, a realization of a
Y5ndom variable uniformly distributed in the intenjd, 1],
and identify the subinterval containing The index of this
subinterval is equal to the index of the cross-link to be rup-
tured. This process is followed starting with0, n=N and
@intil all the cross-links are ruptured.
The quantitiesF,,) and(AW) for a given setCy are com-
uted by averaging oveX),c realizations of the unfolding
istory; we usedN,,c=5000.

with m=1,...,n (13

C. Optimization

We used two optimization methods for finding the con-
figurations that maximizéF,,) and/or¢(AW). In cases where
the search space was sufficiently small, we exhaustively
searched over all possible se®;,. When an exhaustive
search was too time-consuming, we resorted to the following
“random hill-climbing” procedurg13].

(1) Generate a random s@f\,) with N cross-links.

(2) Select a cross-linki,j} from the setC(O)

(3) Evaluate(F,, (or (AW)) for C(O and the “adjacent”
sets obtained frorﬁ:f\?) upon replacmg{l .} with {i,jx1} or
{ix1,j}. Of course, the set§i,j+1} and{i£1,j} must be
admissible, in the sense that no bead can be connected to
more than one cross-link.

(4) Choose the optimal set among the five sets identified
at step(3).

(5) Repeat step&2)—(4) for all other cross-links to com-
plete the first sweep. This defines a new configura@ﬁﬁ

(6) Repeat stepSl)—(S) until C('+1) C

(7) Generate nev@ and repeat step(Q)—(G)

IV. RESULTS
A. Single cross-link

Model I. A single cross-link{i,i+I}, creates a loop of
lengthl in the chain. The optimal configurations in this case
can be found analyticallj13]. In particular,F,=f. for all i
andl, and(AW) depends o only:

2~ -
AW=—5(1-1?), 14

2F0( ) (14
where we have introduced the dimensionless loop length

~ |
l=—.
L

The excess work reaches its maximum ferl/2:
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TABLE I. Single cross link: The dimensionless loop Ien&m, that maximizegAW) as a function of the

dimensionless pulling velocity.

v 0.1 1 5 10 15 20 30 50 100 200 500
TAW 0967 084 073 069 0.675 0.662 0.648 0.63 0.615 0.601 0.587
£2 12~ ~ 12~ ~ 7
AW= — . AW = ==2(1=19)In20==-2(1 - 19In>—. (17b
8, (AW) 21ﬂo( ) 21ﬂo( ) L (17b

Thus one can regard the configurations Wit /2 asopti-

mal with respect to botlfF,,, and (AW).

The meaning of Eq(173 is simple: This is the forcéEq.
(16)] corresponding to the most probable rupture time that

Model II. The model parameters give rise to the dimen-maximizes the probability density of E¢1l5) [33,34]. As

sionless time

7= Kot
and dimensionless pulling rate
T
Kofe

D=

expected, this asymptotic expression @, reveals the
logarithmic dependence on the loading rg88-34. Further,

(Fy increases indefinitely ds— 1, i.e., the largest forces are

generated by chains with terminal cross-links. The case of

=1 is pathological: In this case the ends of a cross-link itself
are pulled apart with the speed Since in our model the
intrinsic spring constant of a cross-link is infinite, this leads

Following the analysis in Sec. Il B, it is straightforward to a divergent force in Eq17a. This pathology does arise in
to obtain the probability density function for the dimension- model | where, by construction, the cross-link ruptures at the

less rupture timer,

(7,60 = exy ar)exp{ %[1 - expwr)]}, (15)

force f..
The excess work also grows logarithmically withbut in

contrast to(F,), its optimization leads to values ofthat
depend or¥. In particular, forg — o the optimal value ig

where the parametet combines the dimensionless loading _, 1,2 |n general, for moderately large valuestothe op-

rate and geometric parameters,
v
0= - .
1-1

This combination arises naturally fad=1 but not for N
> 1. At the moment of rupture we have

Fu(n)=1f(7n) = F—o,vvk(ﬂ': f.Or (16)
and
_1 of L \_1fe o
AW(T)_Zro(kaT) (1_~| 1)‘2r0(1 6>+,

and therefore we obtain
(Fp = fcﬁf ®(7,0)dr
0
and

12—~ (7
(A\N}Z——C(l—l)lﬁzf 2d(1, 0)dr.
21, 0

timal value ofl is in the range 1/21<1 (see Table). All

of these conclusions are straightforward to derive from the
asymptotic approximations of E(¢L7) and are confirmed by
computing the exact expressions.

It is instructive that the optimal chain configuration maxi-
mizing the excess workAW) in model Il in the limit of
infinitely fast loading is the same as the optimal configura-
tion predicted by model I. The fast pulling limit of model I,
where a cross-link rupture is unlikely until the internal force
attains a sufficiently large valué=f., can be roughly ap-
proximated by model I. The two models however do not
become equivalent in this limit: The unfolding force for a
single cross-link is independent of the chain configuration
and equal to a constant value fyfin model | while it de-
pends on both on the loading rate and the cross-link location
in model II.

B. Small number of cross-links

Model I. This case has been studied in detail in R&8].
The key result is that the same optimal configurations maxi-
mize bothF,, and AW. Those configurations involve “paral-
lel strands” of the fornCy={{i1,j1}.{i2, 2}, ... {in,in}} SUCh
thati; <i,<--+iy<ji1<]j2<---<jn. For example, foN=3

The integrals involved in these expressions can be evaluatethd L=50 the optimal configurations have the forfi,i
numerically only. Nevertheless, one can obtain asymptotie-1},{i+1,i+I1+2},{i+3,i+1+3}} wherel|=26 (see Fig. 2

approximations valid fog>1:

(Fy=f.In6o=f,In—,

(17a

Note that the optimal value dfis | =L/2, which is similar to
that found in the case of a single cross-link.

Further, we showed that optimality can be understood in
terms of a continuous “super cross-lintk8CL) model. In the

021904-5



EOM, MAKAROV, AND RODIN PHYSICAL REVIEW E 71, 021904(2005

NSCL's (Fig. 2. The force in each of the cross-links in the
NSCL configuration is approximately the same. Further,
within model |, rupture of one cross-link in an NSCL con-
figuration results in an increase of the force in each of the
remaining cross-links such that NSCLs rupture in an
avalanche-like fashion. Because of that the force vs displace-
ment curvel(e) has only a single maximum, similarly to the
case of a single cross-link.

Model II. Remarkably, we found that the NSCL configu-
rations appear to be optimal with respect to b¢fh,) and
(AW), although the configurations optimal f¢f,,) are not
necessarily optimal fofAW), and vice versa. This statement
is difficult to verify conclusively, because even fid=3 the
search space is too large for an exhaustive search. Neverthe-
less, using the search algorithm described in Sec. Il C, we
could not find a configuration better than the NSCL of the

51 form {{i,i+1},{i+1,i+2+},{i+3,i+3+11}, where the opti-

FIG. 2. An optimal NSCL configuration of an=50 chain with ~ Mal value ofl was determined by the exhaustive search with
N=3 cross-links. Within model I, this configuration optimizes both respect tol. The optimal values of maximizing (F,) and
AW andF,, In general, the optimal configurations have the form (AW) were different, which is similar to the conclusion
{i,i+1}{i+1,i+2+},{i+3,i+3+I}} wherel is the loop length. reached with model Il foN=1. Furthermore, the values of

For model II, the loop lengththat optimizeSAW) is a function of T=1/L that optimize(F.} are close td=1 and the optimal
the pulling velocityv while (F,) is optimized byl =47 regardless of P (Fr) P

the pulling velocity.

values ofl that maximize/AW) depend o in a way similar
to the case oN=1 (see Table ). We also found that{F,)

limit as the chain becomes continuous, that is-c andb  and{AW) grow logarithmically withv (Fig. 3).

—0, the topological constraint that any bead can be con- An attempt to predict the response of NSCL configura-

nected to only one cross-link can be relaxed because, as fHPns using the rate-dependent SCL model was only partially
as the mechanical response is concerned, neighboring beagisccessful. In particular, the rate-dependent SCL model was
become indistinguishable. Therefore, one can create a SCGible to follow the trends predicted by the simulations but the

by placing allN cross-links between the same poinfis,i agreement was mostly qualitative. Furthermore, the predic-

+1}. Then the cross-links share the load equally so that théons of the rate-dependent SCL model were qualitatively
force in each cross-link i$/N, and the SCL acts like a Similar to those obtained from the analysis fér1. Let us

single cross-link that can sustain a maximum forceFgf ~ Mention that the rate-dependent SCL model was successful
=Nf, resulting in an excess work of unfolding equal[ts. in predicting the first but not the last rupture events, espe-

Eq. (14)] cially for intermediate loading rates. In the limit—, one
can use the asymptotic approximations developed\fed,,
2 §~ ~ with the provision thak, and f. are replaced witlNk; and
AW= o, (1=19. Nf., respectively.
As in the case oN=1, the maximumAW is achieved when C. Large number of cross-links
[=1/2. For N<L, F,, and AW are proportional taN and N2, re-

For a discrete chain, we cannot achieve the SCL configuspectively. Preliminary computationsd3] have suggested
rations because of the imposed constraint prohibiting multhat these scaling rules do not hold for lafyeas bothF,
tiple cross-links between the same monomers. Neverthelesand AW tend to saturate with increasimg
it turns out that the constrained optimal solutions are very Here we study in more detail the case where each bead is
close to the SCLs, and they involve parallel strands. Weconnected to another bead so that the total number of cross-
refer to such configurations as “nearly super cross-links” otinks isN=L/2 (for an everL) or (L+1)/2 (for an oddL). In

TABLE II. The NSCL configuration made of three cross-links: The dimensionless loop I@mtthat

maximizes{AW) and the dimensionless loop Ienth:Ign that maximizegF,,, as functions of the dimension-
less velocityw.

0.2 1 2 10 20 30 40 60 100
0.94 0.88 0.84 0.8 0.76 0.72 0.7 0.68 0.66

?
law
TF 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
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FIG. 3. (a) The maximum forcgF,, and (b) the excess work 7 cross-links generated randomly. The fully random configurations

(AW) as a function of the pulling rate for NSCL configurations with are denoted by the squares and those containing the clamp by the
different values of the loop length circles.

this case, the search space is large and for this reason Wecfﬁo):{{1,15},{2,1]},{3,16},{4,14},{5,17},{6,1(},{7,9},

limited our analysis to short chaing,=19, and to using
model | only. The key result of our computations can be {8,18,{13.20,{12,19},

stated as follows. _ o
(@) All optimal configurations contained the subset of Which also maximize§,,
(d) The mean value of toughness for randomly gener-
ated cross-link configurations W= 0.352/T'y, and only a

three cross-links
small fraction of configurations have the toughness close to

Co={{i,i+L/2L{i+1,i+3+L/2}{i +4,i +4+L/2}},

which, again, is a “clamp” of parallel strands. The excessAW,,,

work for the configurationcg in the absence of any other These results are further illustrated in Fig. 4, where we plot
the histograms folF,, and AW corresponding to randomly

cross-links is equal taW* =0.79f2/T.
(b) By adding seven random cross-links to the clampgenerated cross-link configurations and configurations con-
taining the subsettg. The latter, on the average, have larger
values of both~,, andAW, as compared to random cross-link
arrangements. However, adding random cross—links:*go
does not necessarily improve the mechanical resistance of

one is more likely to reduce than to incredsé/ in compari-

son toAW*,
(c) The maximum AW is AW,,=0.9%2/T,, corre-

sponding to the configuration
021904-7
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the chain: only a relatively small fraction of such configura-domains feature the same hydrogen-bond clamp formed by
tions perform better tha@;. their terminal parallel strands.
(3) Adding random cross-links to an optimal NSCL con-
. figuration can be viewed to some extent as a way to mimic
V. DISCUSSION: IMPLICATIONS FOR FORCE-INDUCED the effect of nonnative interactions in our Go-like model. As
PROTEIN UNFOLDING EXPERIMENTS seen in Fig. 4, these interactions can both reduce and en-

Cohesive interactions in proteins are delocalized and thugance the resistance of the chain to the mechanical unfold-
rarely can be adequately described as cross-links. For thi§9- This suggests that given the native topology, further op-
reason, we expect our model not to make quantitative prelimization with respect to the protein’s mechanical stability
dictions but rather to provide a guide to the relationship be£an be achieved via mutations that alter non-native interac-
tween the overall fold topology and its mechanical responseions[59]. _ _

In certain situations disulphide bonds, hydrogen bonds, or Our study may also elucidate the effect of the loading
groups of hydrogen bonds in proteins can be modeled agime on the mechanical function of proteins. Under physi-
cross-links[26,28. It may further be possible to synthesize 0logical conditions, proteins are subjected to forces that are
cross-linked polymers, in which cross-links are placed in ften quite different from those in AFM studies and/or simu-
controlled fashion. Such polymers could provide an experilations. Likewise, the timescales at which they are loaded are
mental test ground of our theory and also exhibit novel medifferent from those of pulling experiments. For example, in
chanical properties. AFM studies of the muscle protein titif19,20, individual

Our results can be used to screen the protein databank tgmunoglobulin-like domains are unfolded in the range of
identify the proteins that exhibit the topology that may po-forces f,~150-250 pN, depending on the stretching rate
tentially lead to optimal mechanical stability. While this ap- that is typically in the range 0§=0.1-10 nm/ms. The rate
proach has not been pursued systematically yet, there is ev@f loading in these experiments can be roughly estimated as
dence that it may result in useful predictions. In particular, df/dt = f /7~ F /Al
the mechanical unfolding of the immunoglobulin domain =T Lwiad

127, ubiquitin, and protein G—all containing terminal paral-where the domain stretching timeis estimated adl/v and

lel strands—has been observit®?,19,2q and/or predicted A| is the contour length of the domain. This give§/dt

via atomistic simulation$30] to require forces much higher —1g9_1g7 (N/s) for v=0.1-10 nm/ms.

than those in the case of “generic,” nonmechanical proteéins gy contrast, in the experiments that probe viscoelastic
[9]. This is in accord with the conclusion reached here thahehavior of skeletal myofibrilg61], individual domains are
configurations involving parallel strands are optimal with ré-subjected to much lower forced,~ 10 pN) over a time-
spect to the unfolding force and work. We have arrived at thg,.51e of a few seconds and their unfolding events are rare

same conclusion in our previous stuly3] where we used (yet pelieved to be physiologically importaf@d]). Using
model | thus ignoring the statistical nature of bond rupture_ 1_10s  this gives a loading rate off,/r

[32—-34. The present study demongtrates that_ rate dependentqy-12_1 g1t (N/s), several orders of magnitude lower than
effects that are well known to be important in force pmbethat in AFM experiments.

spectroscopy pulling experimeni§,8,19,21,24,54-§0do To make connection to the present study, consider the

not change the conclusion about the optimality of para”eldimensionless loading rate parameteintroduced in Sec.
strands. y
IV:

In addition, several other observations may be of reI—V
evance in the context of mechanical stability of proteins v

(1) For sufficiently slow pulling rates, parallel strands 6:k0_f' (183
formed between thends of the chaiffi.e., those witH =L) ¢

lead to higher values for both,, and AW. In contrast, for  whereT is the overall spring constant of the chain prior to
very high pulling rates, parallel strands with-L/2 are op-  rupture. This parameter characterizes the loading timescale
timal with respect taAW while terminal parallel strands still relative to that of internal dynamics of the chain. The optimal
maximize the unfolding force. Since the loading rates arehain configurations are generally different in the limits
expected to be slower under physiological conditions as-1 andg<1 (cf. Tables | and ll. To estimate this parameter
compared to AFM experiments or molecular dynamics simufor a protein domain undergoing unfolding via the two-state

lations(see below, the above observations may explain why mechanism, we rewrite E4184) in the form
most protein domains with superior mechanical properties

containterminal parallel 8 strandq9-12,25-27,30,31,37 df/dt
(2) The configurations that include the optimal NSCL GZH'

configurations are superior to random structufese Sec.

IV C). This result may shed light on the recent finding thatEquation(18b) is more informative because in most AFM

proteins with different folds may display similar mechanical studies the domain of interest is part of a longer chain; the

resistance. In particular, the unfolding mechanisms of the allvelocity at which the ends of thentire chain are separated is

B 127 domain of the muscle protein tit[i9,20,25,26and of  different from the speed at which the ends of the domain are

the a/ B ubiquitin domain[12,30 are very similar and are moved apart and thus the linkage between the domain and

characterized by a high unfolding force because both of theste pulling device affects the unfolding dynamii&3,34.

(18b

021904-8
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Equation(18b) is written in the form that is independent of (b) Unlike the case of generic random configurations,
the linkage. the behavior of optimal configurations is close to that pre-
Using the valuesk,=5x10*s, f.=16 pN deduced dicted by a simple two-state model over a wide range of
from the AFM data for the 127 domaif60] we estimated  loading rates. In particular, the unfolding force exhibits loga-
=10?- 10° for the experiments that probe titin viscoelasticity rithmic dependence on the loading rate, similar to that de-
[61] and #=10°P-10' for AFM experiments. rived from the two-state model. This supports the use of
Given the above difference in the loading rates, what canwo-state model$20] to extrapolate AFM data outside the
we learn about biological function of load-bearing proteinsrange of experimental loading rates.
from AFM pulling studies? Our study suggests that AFM
data can be extrapolated to lower loading rates. Specifically,
we have shown the following.

(a) Configurations containing parallel strands are opti- This work was supported by grants from the Robert A.
mal for both slow(#<1) and fast(6>1) loading. Further, Welch Foundation and ACS Petroleum Research Fund and
the configuration optimal with respect to the unfolding forceby the National Science Foundatiggrants CHE-0347862
is the same in both regimes. and CMS-0219839 to D.E.M. and G.JR.
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