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We have used kinetic Monte Carlo simulations to study the kinetics of unfolding of cross-linked polymer
chains under mechanical loading. As the ends of a chain are pulled apart, the force transmitted by each
cross-link increases until it ruptures. The stochastic cross-link rupture process is assumed to be governed by
first order kinetics with a rate that depends exponentially on the transmitted force. We have performed random
searches to identify optimal cross-link configurations whose unfolding requires a large applied forcesmeasure
of strengthd and/or large dissipated energysmeasure of toughnessd. We found that such optimal chains always
involve cross-links arranged to form parallel strands. The location of those optimal strands generally depends
on the loading rate. Optimal chains with a small number of cross-links were found to be almost as strong and
tough as optimal chains with a large number of cross-links. Furthermore, optimality of chains with a small
number of cross-links can be easily destroyed by adding cross-links at random. The present findings are
relevant for the interpretation of single molecule force probe spectroscopy studies of the mechanical unfolding
of “load-bearing” proteins, whose native topology often involves parallel strand arrangements similar to the
optimal configurations identified in the study.
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I. INTRODUCTION

A number of proteins exhibit a combination of strength
and toughness that cannot be matched by artificial materials
f1–4g. Recent single molecule force probe spectroscopy ex-
periments suggest that these remarkable properties are ac-
complished through the mechanical response of individual
protein domains, which are capable of dissipating large en-
ergy upon their mechanical unfoldingf2,4,5g.

In single molecule pulling experiments employing the
atomic force microscopesAFMd, one end of the protein is
attached to a substrate and the other end is attached to a
cantileverssee, e.g., Refs.f6–8g for a reviewd; the cantilever
then can be displaced at a constant rate. During such an
experiment, one measures the pulling force, and then pre-
sents the data in the form of the force-displacement curve.
The forces generated by different proteins under typical ex-
perimental conditions range from a few piconewtons to sev-
eral hundred piconewtons and generally depend on the pull-
ing rate. If one were to perform an equilibrium, reversible
stretching experiment by pulling on the molecule at a suffi-
ciently slow rate then the measured force-vs-displacement
curve would become rate independent and the work done by
the pulling force would be equal to the free energy difference
between the folded and the stretched states of the molecule.
In practice, stretching of a molecule is nearly an equilibrium
process if the timescale of pulling is longer than that of the

molecule’s conformational changes. This equilibrium regime
is rarely achieved in AFM pulling studies. It further appears
that many proteins that perform “load-bearing” functions in
living organisms operate far away from equilibrium; as a
result their mechanical stability is often uncorrelated with
their thermodynamic stabilityf7,9–12g.

For example, the work required to unfold the molecule of
the muscle protein titin in a typical AFM pulling experiment
is about 2 orders of magnitude higher than its free energy of
folding, indicating that this is a highly nonequilibrium pro-
cessf5g. This property accounts for the high toughness of
titin arguably required for its biological function in the
muscles. Similarly, the difference between the force-vs-
extension curves measured in the course of stretching and
subsequent relaxation of spider capture silk proteinsf4g re-
veals that stretching is a nonequilibrium process, in which
extra energy is dissipated. In contrast, the work required to
unfold of the myosin coiled-coil via pulling on it at similar
pulling rates is comparable to the free energy of folding,
indicating that this is a nearly equilibrium processf5g.

The mechanical resistance of a protein is thus determined
both by its structure and by the loading rate. Recently, we
have studied a toy model of a cross-linked polymer chain,
which we used to identify the chain configurations that lead
to its high mechanical resistancef13g. In that model, we
considered a Gaussian chain with rigid cross-links. Unfold-
ing of the chain under mechanical loading occurs as a result
of rupture of the cross-links. Each cross-link ruptures once
its internal force reaches a critical value. Thus, as the chain
ends are being pulled apart at a constant rate, the force in
each link increases until it ruptures. As the loading proceeds,
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all the cross-links become ruptured and the chain unfolds.
The excess work done on the cross-linked chain, as com-
pared to the work done stretching the unconstrained chain, is
a measure of the chain toughness. Given the total number of
cross-links, one may seek the optimal cross-link configura-
tions that maximize either the excess work or the maximum
force during the unfolding process. Our rationale for study-
ing such a simple model was the previous finding
f7,10–12,14g that the unfolding mechanism is largely deter-
mined by the native topology of the protein. This view is
further supported by the success of simplified, Go-like mod-
els in predicting the mechanisms of mechanical unfolding
f15–18g. Although Gaussian cross-linked chains are merely
caricatures of real biopolymers, they may adequately capture
the effects of topology on the unfolding mechanism. Indeed,
there are good reasons to believe they do. Specifically, the
key finding of our previous study is that the optimal configu-
rations that maximize the peak force and the dissipated en-
ergy must involve parallel strands. This finding is consistent
with experimental studiesf7,9,10,19–24g and molecular dy-
namics simulationsf25–29g of the protein domains exhibit-
ing high unfolding forces, such as the I27 domain in titin.
Further, this finding has led to the prediction that protein
domains with the ubiquitin fold, which features terminal par-
allel strands similar to those in I27, exhibit superior me-
chanical properties, despite the fact that they have no appar-
ent mechanical functions in living organismsf30g. This
prediction is supported by both experimentsf12g and mo-
lecular dynamics simulationsf30,31g.

While providing results that are qualitatively consistent
with atomistic scale studies, our modelf13g entirely ignored
stochastic and rate-dependent aspects of unfolding. This is an
unrealistic assumption in many cases because, in general,
rupture of a chemical bond is a chemical reaction, i.e., a
stochastic process whose rate is affected by the transmitted
force f32g. Further, as we mentioned earlier, load-bearing
proteins exhibit high toughness and strength precisely be-
cause they are loaded at high rates so that unfolding is a
nonequilibrium irreversible process accompanied by large
energy dissipation.

Models of force-induced rupture of chemical bonds are
well known in the contexts of protein unfolding and ligand
unbindingf19,20,32–35g and fracturef36g. In those models,
rupture of a bond is described by first-order kinetics and its
rate depends on the force transmitted by the bond. The main
purpose of this paper is to adapt our model of cross-linked
Gaussian chains to study how the optimal chain configura-
tions that maximize the excess work and/or the maximum
force depend on the loading rate. To this end, we have as-
sumed that rupture of each cross-link is described by first-
order kinetics with a force-dependent probability and per-
formed kinetic Monte Carlo studies of the chain unfolding.
The main finding of this study is that the parallel-strand ar-
rangements remain optimal even when the stochastic nature
of bond breaking is taken into account; While always featur-
ing such parallel strands, the found optimal configurations
generally depend on the loading rate.

The rest of this paper is organized as follows. In Sec. II,
we describe the model. In Sec. III, we outline the simulation
methods. In Sec. IV, we present our simulation results. In

Sec. V, we discuss implications of our results for pulling
experiments on single molecules.

II. THE MODEL

Consider a polymer chain consisting ofL+1 beads con-
nected byL links. The chain is assumed to obey Gaussian
statistics so that the probability distribution for the distance
between beadsi and j is given by

Psur i − r jud = F 3

2pb2ui − j uG3/2

expF−
3ur i − r ju2

2ui − j ub2 G , s1d

whereb is the rms length of a single link. One way to con-
struct such a Gaussian chain is to connect neighboring beads
by harmonic springs such that its potential energy is given by

U =
1

2
g0o

i=1

L

ur i+1 − r iu2 with g0 =
3kBT

b2 , s2d

wherekB is Boltzmann’s constant andT is the temperature.
The motion of the chain is constrained byN cross-links.

Each link is designated by the indices of its end points, so
that the entire set of cross-links is denoted byCN
={hi1, j1j ,… ,hiN, jNj}. Each cross-link is regarded as rigid;
alternatively, one can model a cross-link as a spring with a
spring constantgc@g0. We assume that no bead can be at-
tached to more than one cross-link, so that the maximum
number of cross-links isN=sL+1d /2.

The chain endssmonomers number 1 andL+1d are pulled
apart at a constant speedv so that the distance between them
grows linearly as a function of timet:

ur L − r 0u ; e= vt. s3d

We suppose that loading is slow compared to a typical time-
scale of thermal Brownian motion of the chain. In this case,
we assume that the value of the pulling forceFstd recorded at
any instantt is the forceaveragedover the thermal motion.
At the same time, the timescale of cross-link rupture may be
comparable with that of loading and so the rupture of a
cross-link may result in a measurable change inFstd.

We consider two rupture models for the cross-links. In the
first model, which we refer to asmodel I, a cross-link rup-
tures deterministically once its internal force reaches a criti-
cal valuefc. This model has been studied previouslyf13g but
we include it here for comparisons. In the second model, to
which we refer asmodel II, rupture of a cross-link is a sto-
chastic process described by first-order kinetics. Specifically,
the conditional probability that the cross-link that is intact at
time t ruptures in the time interval fromt to t+Dt depends
only on the instantaneous value of the internal forcefstd and
is given byf32g

kffstdgDt = k0 expF fstd
fc
GDt, s4d

wherek0 is the rupture rate constant at zero force andfc is a
reference force. Equations4d is a commonly used model,
which assumes that the free energy barrier to rupture de-
creases linearly with the forcef f20,32g. Although this equa-
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tion is not necessarily quantitativef31,37g, it is sufficient for
qualitative predictions, as it properly identifies the rapid in-
crease ofkffstdg once the internal force exceedsfc.

Because the rate of Eq.s4d is not zero at zero force, then,
strictly speaking, any cross-link configuration in model II is
unstable and the chain will unfold irreversibly on a time-
scale of orderk0

−1 even if no force is applied. This is not
realistic since the folded state of a protein at zero force is
expected to be thermodynamically more stable than its un-
folded state. It is necessary to allow for the recombination of
cross-links in order to restore the detailed balance in the
systemf35,38,39g. At zero force, the rate of recombination
for a cross-link would be higher thank0 thereby rendering it
thermodynamically stable. Here, we assume that the timek0

−1

is much longer than the timescale of loading. Under this
assumption recombination of cross-links during unfolding is
unlikely because forces in each cross-link will quickly reach
values large enough to destabilize each bond thermodynami-
cally such that the ruptured bond state has lower free energy
than that with the bond intact; in other words, once the bond
is broken it will be unlikely to reform unless the loading
force is removed. For these reasons we did not include cross-
link recombination in our model; It would therefore not be
applicable to very slow, nearly equilibrium pulling experi-
ments. In this respect, the physical regime explored by the
present work is quite different from the reversible stretching
conditions assumed in the theoretical studies of RNA and
DNA mechanical denaturationf40–44g and in the theories of
the reversible stretching of proteinlike heteropolymers
f45–47g. Note, however, that nonequilibrium effects have
been considered in Ref.f46g.

When the ends of a Gaussian chain are pulled apart, its
response follows Hooke’s lawf48,49g, which also holds in
the presence of cross-linksf50g. However, the spring con-
stant of the entire chain changes upon cross-link rupture.
Under constant velocity loading conditions, the force-
displacement curveF=Fsed is a piece-wise linear function
with jumps and different slopesssee Fig. 1d. Once all the
cross-links are ruptured, the slope is reduced to the effective
spring constant of the unconstrained chain,G0=g0/L.

The mechanical response of a cross-linked chain is repre-
sented by two quantitiesscf. Fig. 1d: sid the maximum force
Fm and sii d “toughness,” i.e., the excess work done upon
unfolding:

DW=E
0

u

Fsedde−
1

2
G0u

2, s5d

whereu is the distance between the 1st and theL+1st beads
at the end of the pulling experiment, once all the cross-links
have been ruptured.

For model I, rupture is a deterministic process, so thatFm
and DW are unique for a given setCN. Further, the force-
displacement curve and its parametersFm and DW can be
determined upon solving a set ofN linear problems that re-
flect the sequence of the rupture events. In contrast, in model
II, rupture is a stochastic process. Accordingly, for a given
set CN, it is necessary to determine the averages ofFm and

DW over sufficiently large number of realizations of the sto-
chastic unfolding process; we denote those quantities by
kFml and kDWl, respectively.

The adopted model will be used in the following settings.
• Characterization problem: GivenL , CN, g0, k0, fc, and

v determinekFml and kDWl.
• Optimization problem: Given L , N, g0, k0, fc, and v

determine the configurationssd CN that maximizessd kFml and
kDWl.

III. METHODS

A. Elasticity analysis

Between two rupture events, the cross-linked chain re-
sponds as a collection of Hookean springsf50g. The springs
are identified as follows.

s1d Arrange the 2N beads belonging to the cross-links in
the ascending order:

1 ø i1 , i2 , ¯ i2N−1 , i2N ø L.

s2d Identify each chain segment between two consecutive
members of this set as a spring.

s3d Assign to each spring the spring constantg0/n, where
n is the number of the chain links in the segment.
Once the springs and their spring constants have been iden-
tified, the entire assembly can be analyzed using the finite-
element methodf50g. The results can be expressed as

Fstd = Gstdvt s6d

and

FIG. 1. Unfolding of a cross-linked chain.sad The configuration
of a L=50 chain with the cross-links hh7,19j,h15,47j,
h16,42j,h21,35j,h40,48jj. sbd The force-vs-extension curve of this
chain in the case of the deterministic unfolding scenariosmodel Id.
Each maximum corresponds to the rupture of one or more cross-
links. The mechanical resistance of the chain is characterized by
two parameters: The excess workDW required to extend the cross-
linked chain relative to that for the “denatured” chainsequal to the
shaded aread and the maximum forceFm.
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fkstd = akstdFstd, s7d

whereGstd is the instantaneous overall spring constant of the
cross-linked chain,fkstd is the internal force in thekth cross-
link, and akstd’s are dimensionless coefficients. The proce-
dure for finding these coefficients is detailed in Ref.f50g.
Note thatGstd andakstd depend on the current configuration
of the cross-links and remain constant between rupture
events; in general, they are piecewise constant functions of
time.

B. Kinetic Monte Carlo method

To simulate the stochastic unfolding process we use the
kinetic Monte Carlo methodf35,51–53g. Suppose that at
time t0, there aren cross-links. Let us evaluate the probabil-
ity that the first rupture among those cross-links occurs at a
later time, in the time interval betweent and t+Dt. This
probability is equal to the probabilitySst ,t0d that no cross-
link has ruptured in the time interval betweent0 andt, times
the sum of the probabilities for each of the cross-link to
rupture in the time interval betweent and t+Dt:

FstdDt = Sst,t0do
m=1

n

kffmstdgDt. s8d

Also, in the time interval betweent and t+Dt the survival
probability is reduced byFstdDt, so that

− FstdDt = Sst + Dt,t0d − Sst,t0d = sdS/dtdDt.

This leads to the differential equation forSst ,t0d:

dSst,t0d/dt = − Sst,t0do
m=1

n

kffmstdg. s9d

Using Eqs. s4d, s6d, and s7d we have kffmstdg
=k0 expfamst0dGst0dvt / fcg; substituting this into Eq.s9d and
integrating we obtain

Sst,t0d = expH− k0o
m=1

n
fc

amst0dGst0dvFexpSamst0dGst0dvt

fc
D

− expSamst0dGst0dvt0
fc

DGJ s10d

and

Fstd = k0Sst,t0do
m=1

n

expFamst0dGst0dvt

fc
G . s11d

The standard methodf35,51–53g for generating the timet
on a computer is to solve the equation

Sst,t0d = j, s12d

where j is a uniformly distributed random variable in the
interval f0,1g. We use modified Newton’s method to solve
this equation numerically. Once the timet is generated, we
need to determine which of then cross-links ruptures. This is
done by computing the weighted probability of rupture for
each of the cross-links:

wm =

expF fmstd
fc

G
o
j=1

n

expF f jstd
fc

G with m= 1,…,n. s13d

Next, we divide the intervalf0,1g into n subintervals whose
lengths arewm. Finally, we generatel, a realization of a
random variable uniformly distributed in the intervalf0,1g,
and identify the subinterval containingl. The index of this
subinterval is equal to the index of the cross-link to be rup-
tured. This process is followed starting witht=0, n=N and
until all the cross-links are ruptured.

The quantitieskFml andkDWl for a given setCN are com-
puted by averaging overNMC realizations of the unfolding
history; we usedNMC=5000.

C. Optimization

We used two optimization methods for finding the con-
figurations that maximizekFml and/orkDWl. In cases where
the search space was sufficiently small, we exhaustively
searched over all possible setsCN. When an exhaustive
search was too time-consuming, we resorted to the following
“random hill-climbing” proceduref13g.

s1d Generate a random setCN
s0d with N cross-links.

s2d Select a cross-linkhi , jj from the setCN
s0d.

s3d EvaluatekFml sor kDWld for CN
s0d, and the “adjacent”

sets obtained fromCN
s0d upon replacinghi , jj with hi , j ±1j or

hi ±1, jj. Of course, the setshi , j ±1j and hi ±1, jj must be
admissible, in the sense that no bead can be connected to
more than one cross-link.

s4d Choose the optimal set among the five sets identified
at steps3d.

s5d Repeat stepss2d–s4d for all other cross-links to com-
plete the first sweep. This defines a new configurationCN

s1d.
s6d Repeat stepss1d–s5d until CN

si+1d=CN
sid.

s7d Generate newCN
s0d and repeat stepss2d–s6d.

IV. RESULTS

A. Single cross-link

Model I. A single cross-link,hi , i + lj, creates a loop of
length l in the chain. The optimal configurations in this case
can be found analyticallyf13g. In particular,Fm= fc for all i
and l, andkDWl depends onl only:

DW=
fc
2

2G0
sl̃ − l̃2d, s14d

where we have introduced the dimensionless loop length

l̃ =
l

L
.

The excess work reaches its maximum forl̃ =1/2:
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DW=
fc
2

8G0
.

Thus one can regard the configurations withl̃ =1/2 asopti-
mal with respect to bothFm and kDWl.

Model II . The model parameters give rise to the dimen-
sionless time

t = k0t

and dimensionless pulling rate

ṽ =
G0v
k0fc

.

Following the analysis in Sec. III B, it is straightforward
to obtain the probability density function for the dimension-
less rupture timet,

Fst,ud = expsutdexpH1

u
f1 − expsutdgJ , s15d

where the parameteru combines the dimensionless loading
rate and geometric parameters,

u =
ṽ

1 − l̃
.

This combination arises naturally forN=1 but not for N
.1. At the moment of rupture we have

Fmstd = fstd =
G0

1 − l̃
vk0t = fcut s16d

and

DWstd =
1

2
G0svk0td2S 1

1 − l̃
− 1D =

1

2

fc
2

G0
s1 − l̃dl̃u2t2,

and therefore we obtain

kFml = fcuE
0

`

tFst,uddt

and

kDWl =
1

2

fc
2

G0
s1 − l̃dl̃u2E

0

`

t2Fst,uddt.

The integrals involved in these expressions can be evaluated
numerically only. Nevertheless, one can obtain asymptotic
approximations valid foru@1:

kFml < fc ln u = fc ln
ṽ

1 − l̃
, s17ad

kDWl =
1

2

fc
2

G0
sl̃ − l̃2dln2u =

1

2

fc
2

G0
sl̃ − l̃2dln2 ṽ

1 − l̃
. s17bd

The meaning of Eq.s17ad is simple: This is the forcefEq.
s16dg corresponding to the most probable rupture time that
maximizes the probability density of Eq.s15d f33,34g. As
expected, this asymptotic expression forkFml reveals the
logarithmic dependence on the loading ratef32–34g. Further,

kFml increases indefinitely asl̃ →1, i.e., the largest forces are
generated by chains with terminal cross-links. The case of

l̃ =1 is pathological: In this case the ends of a cross-link itself
are pulled apart with the speedv. Since in our model the
intrinsic spring constant of a cross-link is infinite, this leads
to a divergent force in Eq.s17ad. This pathology does arise in
model I where, by construction, the cross-link ruptures at the
force fc.

The excess work also grows logarithmically withṽ, but in

contrast tokFml, its optimization leads to values ofl̃ that

depend onṽ. In particular, forṽ→` the optimal value isl̃
→1/2. In general, for moderately large values ofṽ the op-

timal value of l̃ is in the range 1/2, l̃ ,1 ssee Table Id. All
of these conclusions are straightforward to derive from the
asymptotic approximations of Eq.s17d and are confirmed by
computing the exact expressions.

It is instructive that the optimal chain configuration maxi-
mizing the excess workkDWl in model II in the limit of
infinitely fast loading is the same as the optimal configura-
tion predicted by model I. The fast pulling limit of model II,
where a cross-link rupture is unlikely until the internal force
attains a sufficiently large value,f ù fc, can be roughly ap-
proximated by model I. The two models however do not
become equivalent in this limit: The unfolding force for a
single cross-link is independent of the chain configuration
and equal to a constant value offc in model I while it de-
pends on both on the loading rate and the cross-link location
in model II.

B. Small number of cross-links

Model I. This case has been studied in detail in Ref.f13g.
The key result is that the same optimal configurations maxi-
mize bothFm andDW. Those configurations involve “paral-
lel strands” of the formCN=hhi1, j1j ,hi2, j2j ,… ,hiN, jNjj such
that i1, i2, ¯ iN, j1, j2, ¯ , jN. For example, forN=3
and L=50 the optimal configurations have the formhhi , i
+ lj ,hi +1,i + l +2j ,hi +3,i + l +3jj where l =26 ssee Fig. 2d.
Note that the optimal value ofl is l <L /2, which is similar to
that found in the case of a single cross-link.

Further, we showed that optimality can be understood in
terms of a continuous “super cross-link”sSCLd model. In the

TABLE I. Single cross link: The dimensionless loop lengthl̃DW that maximizeskDWl as a function of the
dimensionless pulling velocityṽ.

ṽ 0.1 1 5 10 15 20 30 50 100 200 500

l̃DW
0.967 0.84 0.73 0.69 0.675 0.662 0.648 0.63 0.615 0.601 0.587
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limit as the chain becomes continuous, that isL→` and b
→0, the topological constraint that any bead can be con-
nected to only one cross-link can be relaxed because, as far
as the mechanical response is concerned, neighboring beads
become indistinguishable. Therefore, one can create a SCL
by placing all N cross-links between the same points,hi , i
+ lj. Then the cross-links share the load equally so that the
force in each cross-link isF /N, and the SCL acts like a
single cross-link that can sustain a maximum force ofFm
=Nfc resulting in an excess work of unfolding equal tofcf.
Eq. s14dg

DW=
N2fc

2

2G0
sl̃ − l̃2d.

As in the case ofN=1, the maximumDW is achieved when

l̃ =1/2.
For a discrete chain, we cannot achieve the SCL configu-

rations because of the imposed constraint prohibiting mul-
tiple cross-links between the same monomers. Nevertheless,
it turns out that the constrained optimal solutions are very
close to the SCL’s, and they involve parallel strands. We
refer to such configurations as “nearly super cross-links” or

NSCL’s sFig. 2d. The force in each of the cross-links in the
NSCL configuration is approximately the same. Further,
within model I, rupture of one cross-link in an NSCL con-
figuration results in an increase of the force in each of the
remaining cross-links such that NSCL’s rupture in an
avalanche-like fashion. Because of that the force vs displace-
ment curveFsed has only a single maximum, similarly to the
case of a single cross-link.

Model II . Remarkably, we found that the NSCL configu-
rations appear to be optimal with respect to bothkFml and
kDWl, although the configurations optimal forkFml are not
necessarily optimal forkDWl, and vice versa. This statement
is difficult to verify conclusively, because even forN=3 the
search space is too large for an exhaustive search. Neverthe-
less, using the search algorithm described in Sec. III C, we
could not find a configuration better than the NSCL of the
form hhi , i + lj ,hi +1,i +2+lj ,hi +3,i +3+ljj, where the opti-
mal value ofl was determined by the exhaustive search with
respect tol. The optimal values ofl maximizing kFml and
kDWl were different, which is similar to the conclusion
reached with model II forN=1. Furthermore, the values of

l̃ = l /L that optimizekFml are close tol̃ =1 and the optimal

values ofl̃ that maximizekDWl depend onṽ in a way similar
to the case ofN=1 ssee Table IId. We also found thatkFml
and kDWl grow logarithmically withṽ sFig. 3d.

An attempt to predict the response of NSCL configura-
tions using the rate-dependent SCL model was only partially
successful. In particular, the rate-dependent SCL model was
able to follow the trends predicted by the simulations but the
agreement was mostly qualitative. Furthermore, the predic-
tions of the rate-dependent SCL model were qualitatively
similar to those obtained from the analysis forN=1. Let us
mention that the rate-dependent SCL model was successful
in predicting the first but not the last rupture events, espe-
cially for intermediate loading rates. In the limitṽ→`, one
can use the asymptotic approximations developed forN=1,
with the provision thatk0 and fc are replaced withNk0 and
Nfc, respectively.

C. Large number of cross-links

For N!L , Fm andDW are proportional toN andN2, re-
spectively. Preliminary computationsf13g have suggested
that these scaling rules do not hold for largeN, as bothFm
andDW tend to saturate with increasingN.

Here we study in more detail the case where each bead is
connected to another bead so that the total number of cross-
links is N=L /2 sfor an evenLd or sL+1d /2 sfor an oddLd. In

FIG. 2. An optimal NSCL configuration of anL=50 chain with
N=3 cross-links. Within model I, this configuration optimizes both
DW and Fm. In general, the optimal configurations have the form
{hi , i + lj ,hi +1,i +2+lj ,hi +3,i +3+lj} where l is the loop length.
For model II, the loop lengthl that optimizeskDWl is a function of
the pulling velocityv while kFml is optimized byl =47 regardless of
the pulling velocity.

TABLE II. The NSCL configuration made of three cross-links: The dimensionless loop lengthl̃DW that

maximizeskDWl and the dimensionless loop lengthl̃Fm
that maximizeskFml, as functions of the dimension-

less velocityṽ.

ṽ 0.2 1 2 10 20 30 40 60 100

l̃DW
0.94 0.88 0.84 0.8 0.76 0.72 0.7 0.68 0.66

l̃F 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
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this case, the search space is large and for this reason we
limited our analysis to short chains,L=19, and to using
model I only. The key result of our computations can be
stated as follows.

sad All optimal configurations contained the subset of
three cross-links

C3
* = ˆhi,i + L/2j,hi + 1,i + 3 +L/2j,hi + 4,i + 4 +L/2j‰,

which, again, is a “clamp” of parallel strands. The excess
work for the configurationC3

* in the absence of any other
cross-links is equal toDW* =0.79fc

2/G0.
sbd By adding seven random cross-links to the clamp

one is more likely to reduce than to increaseDW in compari-
son toDW*.

scd The maximum DW is DWm=0.93fc
2/G0, corre-

sponding to the configuration

Cm
s10d = ˆh1,15j,h2,11j,h3,16j,h4,14j,h5,17j,h6,10j,h7,9j,

h8,18j,h13,20j,h12,19j‰,

which also maximizesFm.
sdd The mean value of toughness for randomly gener-

ated cross-link configurations isDW̄<0.35fc
2/G0, and only a

small fraction of configurations have the toughness close to
DWm.
These results are further illustrated in Fig. 4, where we plot
the histograms forFm and DW corresponding to randomly
generated cross-link configurations and configurations con-
taining the subsetC3

* . The latter, on the average, have larger
values of bothFm andDW, as compared to random cross-link
arrangements. However, adding random cross-links toC3

*

does not necessarily improve the mechanical resistance of

FIG. 3. sad The maximum forcekFml and sbd the excess work
kDWl as a function of the pulling rate for NSCL configurations with
different values of the loop lengthl.

FIG. 4. Probability distributions forsad Fm andsbd DW for ran-
domly generated configurations containingsL+1d /2 cross-linkssL
=19d, and configurations including the clampC3

* with the remaining
7 cross-links generated randomly. The fully random configurations
are denoted by the squares and those containing the clamp by the
circles.
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the chain: only a relatively small fraction of such configura-
tions perform better thanC3

* .

V. DISCUSSION: IMPLICATIONS FOR FORCE-INDUCED
PROTEIN UNFOLDING EXPERIMENTS

Cohesive interactions in proteins are delocalized and thus
rarely can be adequately described as cross-links. For this
reason, we expect our model not to make quantitative pre-
dictions but rather to provide a guide to the relationship be-
tween the overall fold topology and its mechanical response.
In certain situations disulphide bonds, hydrogen bonds, or
groups of hydrogen bonds in proteins can be modeled as
cross-linksf26,28g. It may further be possible to synthesize
cross-linked polymers, in which cross-links are placed in a
controlled fashion. Such polymers could provide an experi-
mental test ground of our theory and also exhibit novel me-
chanical properties.

Our results can be used to screen the protein databank to
identify the proteins that exhibit the topology that may po-
tentially lead to optimal mechanical stability. While this ap-
proach has not been pursued systematically yet, there is evi-
dence that it may result in useful predictions. In particular,
the mechanical unfolding of the immunoglobulin domain
127, ubiquitin, and protein G—all containing terminal paral-
lel strands—has been observedf12,19,20g and/or predicted
via atomistic simulationsf30g to require forces much higher
than those in the case of “generic,” nonmechanical proteins
f9g. This is in accord with the conclusion reached here that
configurations involving parallel strands are optimal with re-
spect to the unfolding force and work. We have arrived at the
same conclusion in our previous studyf13g where we used
model I thus ignoring the statistical nature of bond rupture
f32–34g. The present study demonstrates that rate dependent
effects that are well known to be important in force probe
spectroscopy pulling experimentsf7,8,19,21,24,54–60g do
not change the conclusion about the optimality of parallel
strands.

In addition, several other observations may be of rel-
evance in the context of mechanical stability of proteins

s1d For sufficiently slow pulling rates, parallel strands
formed between theends of the chainsi.e., those withl .Ld
lead to higher values for bothFm and DW. In contrast, for
very high pulling rates, parallel strands withl .L /2 are op-
timal with respect toDW while terminal parallel strands still
maximize the unfolding force. Since the loading rates are
expected to be slower under physiological conditions as
compared to AFM experiments or molecular dynamics simu-
lationsssee belowd, the above observations may explain why
most protein domains with superior mechanical properties
containterminal parallelb strandsf9–12,25–27,30,31,37g.

s2d The configurations that include the optimal NSCL
configurations are superior to random structuresssee Sec.
IV Cd. This result may shed light on the recent finding that
proteins with different folds may display similar mechanical
resistance. In particular, the unfolding mechanisms of the all-
b I27 domain of the muscle protein titinf19,20,25,26g and of
the a /b ubiquitin domainf12,30g are very similar and are
characterized by a high unfolding force because both of these

domains feature the same hydrogen-bond clamp formed by
their terminal parallel strands.

s3d Adding random cross-links to an optimal NSCL con-
figuration can be viewed to some extent as a way to mimic
the effect of nonnative interactions in our Go-like model. As
seen in Fig. 4, these interactions can both reduce and en-
hance the resistance of the chain to the mechanical unfold-
ing. This suggests that given the native topology, further op-
timization with respect to the protein’s mechanical stability
can be achieved via mutations that alter non-native interac-
tions f59g.

Our study may also elucidate the effect of the loading
regime on the mechanical function of proteins. Under physi-
ological conditions, proteins are subjected to forces that are
often quite different from those in AFM studies and/or simu-
lations. Likewise, the timescales at which they are loaded are
different from those of pulling experiments. For example, in
AFM studies of the muscle protein titinf19,20g, individual
immunoglobulin-like domains are unfolded in the range of
forces fu,150–250 pN, depending on the stretching rate
that is typically in the range ofv=0.1–10 nm/ms. The rate
of loading in these experiments can be roughly estimated as

df/dt . fu/t . fuv/Dl ,

where the domain stretching timet is estimated asDl /v and
Dl is the contour length of the domain. This givesdf /dt
,10−9–10−7 sN/sd for v=0.1–10 nm/ms.

By contrast, in the experiments that probe viscoelastic
behavior of skeletal myofibrilsf61g, individual domains are
subjected to much lower forcessfu,10 pNd over a time-
scale of a few seconds and their unfolding events are rare
syet believed to be physiologically importantf61gd. Using t
,1–10 s, this gives a loading rate of fu/t
,10−12–10−11 sN/sd, several orders of magnitude lower than
that in AFM experiments.

To make connection to the present study, consider the
dimensionless loading rate parameteru introduced in Sec.
IV:

u =
Gv
k0fc

, s18ad

whereG is the overall spring constant of the chain prior to
rupture. This parameter characterizes the loading timescale
relative to that of internal dynamics of the chain. The optimal
chain configurations are generally different in the limitsu
@1 andu!1 scf. Tables I and IId. To estimate this parameter
for a protein domain undergoing unfolding via the two-state
mechanism, we rewrite Eq.s18ad in the form

u =
df/dt

k0fc
. s18bd

Equations18bd is more informative because in most AFM
studies the domain of interest is part of a longer chain; the
velocity at which the ends of theentirechain are separated is
different from the speed at which the ends of the domain are
moved apart and thus the linkage between the domain and
the pulling device affects the unfolding dynamicsf33,34g.
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Equations18bd is written in the form that is independent of
the linkage.

Using the valuesk0=5310−4 s−1, fc=16 pN deduced
from the AFM data for the I27 domainf60g we estimateu
=102−103 for the experiments that probe titin viscoelasticity
f61g andu=105−107 for AFM experiments.

Given the above difference in the loading rates, what can
we learn about biological function of load-bearing proteins
from AFM pulling studies? Our study suggests that AFM
data can be extrapolated to lower loading rates. Specifically,
we have shown the following.

sad Configurations containing parallel strands are opti-
mal for both slowsu!1d and fastsu@1d loading. Further,
the configuration optimal with respect to the unfolding force
is the same in both regimes.

sbd Unlike the case of generic random configurations,
the behavior of optimal configurations is close to that pre-
dicted by a simple two-state model over a wide range of
loading rates. In particular, the unfolding force exhibits loga-
rithmic dependence on the loading rate, similar to that de-
rived from the two-state model. This supports the use of
two-state modelsf20g to extrapolate AFM data outside the
range of experimental loading rates.
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